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Abstract. Reasoning by cases or assumptions is a common form of human reasoning. In case
of probability reasoning, this is modeled by conditioning of a multidimensional probability distri-
bution. Compositional models are defined as a multidimensional distributions assembled from a
sequence of low-dimensional probability distributions, with the help of operators of composition.
We call this sequence its generating sequence.
In case of compositional models, the conditioning process can be viewed as a transformation of one
generating sequence into another one - preferably with the smallest number of local changes. It
appears that the conditioning process is simple when conditioning variable appears in the argument
of the first distribution of the corresponding generating sequence. That is why we introduce the
so called flexible sequences. Flexible sequences are those, which can be reordered in many ways
that each variable can appears among arguments of the first distribution. In this paper, we study
the problem of flexibility in light of the very recent complex solution of the equivalence problem.
Note that by the equivalence problem we understand how to recognize whether two generating
sequence structures induce the same set of conditional independence assertions - the so called
induced independence models.

1 Introduction

The ability to represent and process multidimensional probability distributions is a necessary condition
for the application of probabilistic methods in Artificial Intelligence. Among the most popular approaches
are the methods based on Graphical Markov Models, e.g., Bayesian Networks. The Compositional models
are an alternative approach to Graphical Markov Models. These models are generated by a sequence (gen-
erating sequence) of low-dimensional distributions, which, composed together, create a distribution - the
so called compositional model. Moreover, while a model is composed together, a system of (un)conditional
independencies is simultaneously introduced by the structure of the generating sequence.

Reasoning by cases or assumptions is a common form of human reasoning. In case of probability
reasoning, this is modeled by conditioning of a multidimensional probability distribution. Let us introduce
the problem of conditioning a distribution that is represented in a form of a compositional model.
Generally, conditioning process can be viewed as a transformation of one probability distribution into
another. When representing a distribution in a form of a compositional model, we understand conditioning
as a transformation of its generating sequence into another one - preferably with the smallest number of
local changes (inspired by Lauritzen-Spiegelhalter’s local computations). By a local change we understand
either a change of just one distribution from the corresponding generating sequence (its recalculation),
or permutation of the generating sequence.

The conditioning problem was briefly discussed in [1]. In the very same publication, there was also
given an example illustrating conditioning in a simple distribution π(u, v, w) represented by a compo-
sitional model with a generating sequence π1(u, v), π2(v, w). There was also stated a theorem how to
deal with the case when conditioning variable appears in the argument of the first distribution of the
corresponding generating sequence - Assertion 1 in here - as well as concept of flexible sequences. We
further investigate flexible sequences in this text - primarily using new evidence about independence
equivalent permutations [6] of generating sequences.

1.1 Notation and Basic Properties

Throughout the paper the symbol N will denote a non-empty finite set of finite-valued variables. The
symbols K,U, V,W,Z will be used for subsets of N . |U | will denote the number of elements in U , that is,
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its cardinality. Symbols u, v, w, x, y, z denote variables as well as singletons {u}, {v}, {w}, {x}, {y}, {z}.
Two set inclusion symbols are used thorough the paper, namely ⊂ and ⊆. Whereas the symbol ⊆
represents the usual (non-strict) case of inclusion, the symbol ⊂ is used for strict inclusion only. That
means if U ⊂ V then V \ U ̸= ∅.

All probability distributions of the variables from N will be denoted by Greek letters (usually π);
thus for K ⊆ N , we consider a distribution π(K) which is defined on variables K. If we work with several
distributions, we distinguish between them by indices.

To compose low-dimensional distributions and to get a distribution of a higher dimension, we use the
so-called operator of composition. It is described in the following definition:

Definition 1. For two arbitrary distributions π1(U) and π2(V ) their composition is given by the formula

π1(U) ◃ π2(V ) =
π1(U)π2(V )

π2(U ∩ V )

if π1(U ∩ V ) ≪ π2(U ∩ V ), otherwise the composition remains undefined.
The symbol π1(K) ≪ π2(K) means that π1(K) is dominated by π2(K), which in its turn means (in the

considered finite setting) ∀x ∈ ×j∈KXj ; (π2(x) = 0 =⇒ π1(x) = 0). Moreover, if for any x ∈ ×j∈U∩V Xj

π2(x) = 0, then by dominance π1(U ∩ V ) ≪ π2(U ∩ V ) there is a product of two zeros in the numerator
and we take 0·0

0 = 0

1.2 Generating sequence

The result of the composition (if defined) is a new distribution. We can iteratively repeat the process of
composition to obtain a multidimensional distribution. That is why the multidimensional distribution
is called a compositional model. Regarding the fact that the operator ◃ is neither commutative nor
associative, we always apply the operator from left to right, and we denote the distribution represented
by a generating sequence π1, π2, . . . , πn as

◃π1,π2,π3...,πn = (. . . ((π1 ◃ π2) ◃ π3) ◃ . . . ◃ πn−1) ◃ πn.

Therefore, in order to construct such a model it is sufficient to determine a sequence of low-dimensional
distributions π1, π2, . . . , πn – we call it a generating sequence .

1.3 Structure

Consider a compositional model defined by a generating sequence π1(U1), π2(U2), . . . , πn(Un). Then the
sequence of sets U1, U2, . . . , Un is called model structure and it is usually denoted by symbol P. If not
specified otherwise, P = U1, . . . , Un where (U1 ∪ . . . ∪Un) = N , and we say that P is defined over N and
Ui ∈ P for every i ∈ {1, . . . , n}. Sets defining the structure are called columns to distinguish them from
general sets of variables. Moreover we recognize the auxiliary sets KP

i which reflects the ordering in P -
KP

i is the i-th set from P; e.g. for P = U1, . . . , Un holds that KP
i = Ui for all i = 1, . . . , n.

The reason for double notation of the same set from a structure is the following: Consider a situation
when P = U1, U2, U3, U4 and let P ′ be its permutation such that P ′ = U3, U1, U4, U2 for example. Then
U3 is the first column in sequence P ′ and U1 is the second column in P ′. This can be easily expressed as
U3 ≡ KP′

1 and U1 ≡ KP′

2 now.
In addition, each column KP

i can be divided into two disjoint parts with respect to the structure. We
denote them RP

i and SP
i , where RP

1 = KP
1 and RP

i = KP
i \(KP

1 ∪ . . . ∪KP
i−1) ∀i = {2, . . . , |P|}. SP

1 = ∅
and SP

i = KP
i ∩ (KP

1 ∪ . . . ∪KP
i−1) ∀i = {2, . . . , |P|}.

It has the following meaning: RP
i denotes the variables first occurring in the i-th column of the

sequence P (meaning from left to right). Conversely, SP
i denotes variables from i-th set of P which have

already been used in some foregoing column. Observe that KP
i = RP

i ∪ SP
i . Columns not inducing any

new variables into the sequence are called trivial (i.e. KP
i ∈ P : RP

i = ∅). The super index P may
be omitted if the context is clear. |P| denotes the number of sets in the structure, i.e., |P| = n for
P = U1, . . . , Un.

Example 1. For a generating sequence π1(u), π2(v, w), π3(u, v, x), π4(w, x, y), π5(x, y, z), its structure is
P = {u}, {v, w}, {u, v, x}, {w, x, y}, {w, y, z} and |P| = 5.



KP
1 = u RP

1 = u SP
1 = ∅

KP
2 = {v, w} RP

2 = {v, w} SP
2 = ∅

KP
3 = {u, v, x} RP

3 = x SP
3 = {u, v}

KP
4 = {w, x, y} RP

4 = y SP
4 = {w, x}

KP
5 = {w, y, z} RP

5 = z SP
5 = {x, y}

To be able to simply handle characteristic properties of the respective structures, we introduce a
function

] · [P : 2N → {1, . . . , |P|}

such that for fixed structure P, U ⊆ N , ]U [P= maxu∈U{i : u ∈ RP
i }. Hence ]U [P equals the maximal

index i such that u ∈ U and u ∈ RP
i . Due to the previously established notation, it can be said that

KP
]u[P

is a column KP
i for which u ∈ RP

i , i.e., ]u[P= i : u ∈ RP
i . The symbol P may be omitted in ]u[P

if the context is clear - for example when dealing with one structure only.

Example 2. Consider structure P from Example 1. One can read the following properties: ]u[= 1,
]{u, v}[= 2, ]{u,w}[= 2, ]x[= 3, ]y[= 4, ]{u, v, w, x, y, z}[= 5, and ]z[= 5. Similarly to Example 1

KP
]u[ = u RP

]u[ = u SP
]u[ = ∅

KP
]v[ = {v, w} RP

]w[ = {v, w} SP
]{v,w}[ = ∅

etc.

Definition 2. For a structure P over N we introduce a binary relation ≼P such that for two non-empty
sets of variables U, V ⊆ N : U ≼P V if and only if ]U [P≤]V [P . Moreover, we introduce its strict version
≺P : U ≺P V if and only if ]U [P<]V [P .

The symbol P may be omitted in ≺P and ≼P if the context is clear.

Example 3. Consider the structure from Example 1 again. According to the former definition one can see
that u ≺ v ≼ w ≺ x ≺ y ≺ z in that structure. Similarly, for subsets {u, v, w} ≺ z, {u, v} ≼ w, {u, x} ≺ y,
etc.

1.4 Permutations

To increase the clarity of the text, the standard concept of permutation (including the notation) is used.
In mathematics, the notion of permutation is used with several slightly different meanings, all related to
the act of permuting (rearranging in an ordered fashion) objects or values. Informally, a permutation of
a set of values is an arrangement of those values into a particular order. Thus there are six permutations
of the set {1, 2, 3}, namely [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], and [3, 2, 1].

Definition 3. Let X be a set, then a permutation of X is a bijection σ : X → X.

There are several ways how to write permutations. We use the method of product of disjoint cy-
cles, since it is well known that one can express every permutation as a product of disjoint cycles. Let
i1, i2, . . . , ir be distinct elements of X. The r-cycle (i1 i2 . . . ir) is the permutation which maps i1 7→ i2,
i2 7→ i3, . . . , ir−1 7→ ir, ir 7→ i1 and fixes all other points in X. For a permutation of n symbols, the
collection of all permutation of this set is denoted by Tn.

If σ is a permutation of the set X, we shall write iσ for the image of the element i ∈ X under σ
(rather then σ(i)). The principal reason for doing this is that it makes composition of permutations much
easier: σ1σ2 will mean apply σ1 first and then apply σ2 rather than the other way around.

In case of generating sequences, or sequences of probability distributions generally, we permute ele-
ments ordering. I.e. In a cycle such as σ = (1 2 4 5) we mean that the permutation maps 1st to 2nd,
maps 2nd to 4th, maps 4th to 5th and 5th to 1st one. Hence for π1, . . . , π5, the sequence (π1, . . . , π5)σ ≡
π1, π5, π3, π2, π4. Similarly for structures: Let P = U1, U2, . . . , U8 be a compositional model structure and
σ ∈ T8 be a permutation. In case of cycle σ = (1 2 4 5) holds that Pσ = U5, U1, U3, U2, U4, U6, U7, U8.

The product of two permutations σ1 and σ2 is the function obtained by applying σ1 first and then
applying σ2. Since we are writing maps on the right, we denote this by σ1σ2. Note that in general
σ1σ2 ̸= σ2σ1.

We give a special accent for the following very short cycles - transpositions: A transposition is a cycle
of length two (that is, with two elements) - the so called 2-cycle. Thus a transposition is a permutation



(i j) which simply swaps round the two elements i and j. Transpositions are useful for the following
reason: Is is well known that every permutation can be expressed as a product of transpositions.

For example,
(1 2 3 4 5) = (1 2)(1 3)(1 4)(1 5)

does what we want for a cycle of length 5. Analogous calculations establish the same for other lengths.
A permutation of a given compositional model is a permutation of its generating sequence.

2 Conditioning

In [1] were illustrated a general fact: computation of a conditional distribution π(·|u = xu) (for π =
π1◃. . .◃πn) is easy only if the conditioning variable u appears among arguments of the first distribution π1.
In the following theorem, that was originally published in [1], one can see that the process of conditioning
is simple in case that the conditioning variable appears among arguments of the first distribution in the
respective generating sequence.

Assertion 1 Let π1, π2, . . . , πn be a generating sequence with structure P over N and u ∈ KP
1 . Then,

for any value xu of the variable u, for which π1(u = xu) > 0,

(π1 ◃ π2 ◃ . . . ◃ πn)
(
(KP

1 ∪ . . . ∪KP
n ) \ u|u = xu

)
= κ1 ◃ κ2 ◃ . . . ◃ κn,

where for all i = 1, 2, . . . , n

κi(K
P
i \ u) =

{
πi(K

P
i ) if u ̸∈ KP

i

πi(K
P
i |u = xu) if u ∈ KP

i .

In light of Assertion 1, it seems reasonable to study the raised question: in which case we may reorder
the generating sequence in a way that a desired variable appears among arguments of its first probability
distribution. To specify the problem, we define the so called flexible sequences. Note, that the concept of
a generating sequence flexibility was originally introduced in [1] during studies of a stronger property -
the so called decomposability.

Definition 4. A generating sequence π1, π2, . . . , πn with structure P is called flexible if for all u ∈
KP

1 ∪ . . . ∪KP
n there exists a permutation σ ∈ Tn such that u ∈ KPσ

1 and

◃(π1,π2,...,πn)σ = ◃π1,π2,...,πn .

In other words, flexible sequences are those, which can be reordered in many ways so that each
variable can appears among arguments of the first distribution. However, it does not mean, that each
distribution appears at the beginning of the generating sequence. (If this would be the case, then flexible
sequence would be a subclass of special - the so called perfect [1] - sequences.

Observe that the problem of conditioning by a variable turns into a problem of flexibility in light of
Assertion 1. We resign to study of other possible conditioning algorithms and we demand the conditional
variable among the arguments of the first distribution of the generating sequence.

Every structure induce a system of conditional independence assertions valid for every multidimen-
sional probability distribution represented by a compositional model. We call this system induced inde-
pendence model [3, 5] and for structure P it is denoted by I(P). It seems reasonable to focus on those
permutations only, that do not affect this system of independence assertions - i.e. structures of respective
sequences are independence equivalent. Imagine that we omit this requirement. Then, during a permuta-
tion, structure loose its power to guarantee validity of independence e.g. u⊥⊥v|Z. Then, to represent the
same probability distribution by both - original as well as permutated sequence - the independence has
to be induced by numerical properties of distributions from the generating sequence and vice versa. To
check all such conditions would be extremely time-demanding. Hence we will study only those sequences,
where their flexibility is guaranteed mainly by their structures.

3 Flexible structure

To explore our approximation to flexible sequences from above (where we restrict ourselves to those
flexible sequences that induce simultaneously independence equivalent structures only), we will define
the so called flexible structure.



Definition 5. Let P be a structure over N . P is flexible if ∀u ∈ N exists a permutation σ such that
u ∈ KPσ

1 and I(P) = I(Pσ).

The problem of independence equivalent structures was well examined in [3, 5, 6]. Recall, that there
exists several characterizations of independence equivalence. In this context let us highlight the so called
F-condition set F(P) - one of independence equivalence invariants. First, we will show auxiliary property
of connection. See [5] for more about both these properties.

Definition 6. Consider structure P over N and two distinct variables u, v ∈ N . We say that u, v are
connected in P - u ↔P v if u ∈ KP

]v[ ∨ v ∈ KP
]u[. Otherwise they are not connected u ̸↔P v.

Definition 7. Consider a structure P over N and three disjoint variables u, v, w ∈ N . We say that the
triplet ⟨u, v|w⟩ forms F-condition if

(a) {u, v} ≺P w,
(b) u ↔P w ∧ v ↔P w,
(c) u ̸↔P v.

The set of triples F(P) = {⟨u, v|w⟩ : {u, v} ≺P w ∧ {u, v} ↔P w ∧ u ̸↔P v} is called F-condition set
induced by P.

Assertion 2 For two structure P,P ′ over the same set of variables N holds

I(P) = I(P ′) ⇒ F(P) = F(P ′).

Non-emptiness of the induced F-condition set F(P) has a major impact on the flexibility of the respective
structure. Judge for yourself: If the disjoint triplet ⟨u, v|w⟩ ∈ F(P) then by (a) from Definition 7 and the
fact that F(P) is one of independence class invariants - Assertion 2, it follows that there is no structure
P ′ equivalent with P such that w ∈ KP′

1 . Indeed, there always have to be some foregoing columns
introducing u and v first in P ′. Moreover, (c) implies that if ⟨u, v|w⟩ ∈ F(P) then variable w may appear
not earlier than in the third column of any independence equivalent structure for the first time (both u
and v are introduced in different sets). Hence the emptiness of F(P) is a necessary condition for flexibility
of P:

Remark 1. If a structure P is flexible, then F(P) = ∅.

3.1 Column covering

In this section we shall see that the emptiness of F(P) is not only necessary but also sufficient condition
for the respective structure P flexibility. To prove this we need to employ the specific consequence of
F(P) = ∅. This consequence deals with specific structure behavior regarding its any non-trivial column
- the so called column covering.

Definition 8. Consider structure P over N and variable u ∈ N . Column KP
]u[ is covered in structure

P if either ]u[P= 1 or if there exists variable v ∈ N : v ≺P u such that SP
]u[ ⊆ KP

]v[. We say that KP
]v[ is

covering column of KP
]u[.

The essential feature of F(P) = ∅ lies in the fact formulated in the following lemma:

Lemma 1. Let P be a structure such that F(P) = ∅. Then every its non-trivial column is covered in it.

Proof. Note, that the first and second column of any structure P is covered by definition: Indeed, while
KP

1 is covered by Definition 8; for KP
2 holds that SP

2 = KP
1 ∩KP

2 ⊆ KP
1 and KP

1 is a covering column
of KP

2 . (Note that KP
1 is non-trivial by its definition in any structure P.)

Choose an arbitrary w ∈ N such that ]w[P≥ 3. One can distinguish two cases:

I. |SP
]w[| ≤ 1

II. |SP
]w[| ≥ 2

In case of SP
]w[ ≤ 1, either SP

]w[ = ∅, and then KP
1 can be its covering column, or |SP

]w[| = 1. Put u = SP
]w[

and observe that KP
]u[ is its covering column by Definition 8.

Assume that |SP
]w[| ≥ 2. Choose and fix v ∈ SP

]w[ such that v ≽P v′ for all other v′ ∈ SP
]w[. Now, let

us show that SP
]w[ ⊆ KP

]v[ by considering the opposite for a contradiction - i.e. let ∃u ∈ SP
]w[ such that

u ̸∈ KP
]v[. Then u ≺P v by the choice of v and u ̸↔P v by Definition 6. It implies that ⟨u, v|w⟩ ∈ F(P)

by Definition 7 which contradicts with the lemma supposition F(P) = ∅. Hence SP
]w[ ⊆ KP

]v[ and KP
]w[ is

covered by KP
]v[ in this case, which finishes the proof.



3.2 Independence equivalent permutations

The notion of covering column has a close connection to the so called constant transposition [4] and
related left cycle permutation [6]. For the purpose of this text, we define them in a little but different
way than in [4, 6].

Definition 9. Consider structure P, i ∈ {1, . . . , |P| − 1}, k ∈ {2, . . . , |P| − i} such that KP
i ⊇ SP

i+k.
Then we call a cycle σL = (i+1 i+2 . . . i+k) a left cycle permutation in P. We say that PσL is left
cycle permutation of P.

Assertion 3 If PσL is left cycle permutation of P then I(P) = I(PσL).

In the following we will employ also the following simple assertion from [4]:

Assertion 4 For every structure P such that |P| ≥ 2 and σ = (1 2) holds that I(P) = I(Pσ).

More precisely, by definition of left cycle permutation - Definition 9, any covered column may be moved
just behind its covering column using left cycle permutation. Indeed, let KP

i ,KP
i+k be a couple of covering

and covered column - i.e. KP
i ⊇ SP

i+k by Definition 8. Then (i+1 i+2 . . . i+k) is a left cycle
permutation in P. Using this and the fact that transposition (1 2) preserves induced independence
model in any structure P, one can easily proof that in case of F(P) = ∅, any non-trivial column may be
moved to the first position in the structure while the induced independence model is the same.

Lemma 2. For structure P with F(P) = ∅ and every column KP
]u[, there exists a permutation σ ∈ T|P|

such that (]u[P)σ = 1 (KP
]u[ ≡ KPσ

1 ) and σ may be internally replaced by a sequence of left cycle

permutations and (1 2) transpositions.

Proof. Let us proof the assertion of this lemma by induction on i ∈ {1, . . . , |P|}. The induction hypothesis
for i ≥ 1 is that there exists a permutation σ such that iσ = 1, jσ = j for all i < j ≤ |P|, and σ may be
replaced by a sequence of left cycle permutations and (1 2) transpositions. It is evident for i = 1. σ is
identical permutation in this case.

Assume i =]u[P≥ 2 and that the implication holds every v ∈ N such that ]v[P<]u[P . Then KP
i ≡ KP

]u[

is covered by Lemma 1 - i.e. ∃KP
]v[ such that

SP
]u[ ⊆ KP

]v[. (1)

Since ]v[P<]u[P then by induction hypothesis there exists σ ∈ T|P| such that

KPσ
1 = KP

]v[ (2)

and jσ = j for all ]v[P< j ≤ |P|. Observe that then however

SP
j = SPσ

j for all j >]v[P (3)

by definition of S·
]v[. Combining all the expressions (1), (2), and (3) with the fact that ]u[P>]v[P , we can

easily obtain the relationship SPσ
]u[ ⊆ KPσ

1 guaranteing that σL = (2 3 . . . i) is left cycle permutation

in Pσ. Put σcb = (1 2). Then σ′ = σσLσcb guarantees that iσ′ = 1, jσ = j for all i < j ≤ |P| by their
definition. Note that σ may be replaced by sequence of left cycle permutations and (1 2) transpositions
by induction hypothesis. Then the lemma is proved.

Employing Assertions 5 and 6, one can easily conclude:

Corollary 1. For structure P with F(P) = ∅ and every column KP
]u[, there exists a permutation σ ∈ T|P|

such that (]u[P)σ = 1 (KP
]u[ ≡ KPσ

1 ) and I(P) = I(Pσ).

Realizing the fact that for structure P over N and every variable u ∈ N there exists column KP
]u[,

it follows that F(P) = ∅ is sufficient condition for flexibility of the respective structure P. Hence, using
Remark 1, emptiness of F(P) is not only necessary but also sufficient condition for flexibility of structure
P:

Corollary 2. Structure P is flexible ⇔ F(P) = ∅.



Notice that condition of F(P) = ∅ means the existence of equivalent permutation of P for every
variable where the variable appears in its first column of the permutation. Hence, there could be non-
trivial columns from P that do not appear at the beginning of any such an equivalent structure. On the
contrary, F(P) = ∅ guarantees the existence of equivalent permutation for every non-trivial column such
this column appears at the beginning of the equivalent permutation.

In another words, it allows us to move any non-trivial column to the sequence beginning using some
independence equivalent permutation. See the following example to illustrate the difference:

Example 4. Consider U1 = {u, v}, U2 = {v, w}, and U3 = {w, x}. Observe that for structures U1, U2, U3

and U3, U2, U1, the corresponding formal ratios coincide:

U1, U2, U3 :
{u, v} · {v, w} · {w, x}

v · w
,

U3, U2, U1 :
{u, v} · {v, w} · {w, x}

v · w
.

Then structures U1, U2, U3 and U3, U2, U1 are independence equivalent - formal ratio is one of char-
acterizations of independence equivalence [6]. Moreover, since any of u, v, w, and x appears in the first
column of one of those structures, then this is sufficient for flexibility of U1, U2, U3.

Note that since F(U1, U2, U3) = ∅, then there exists also an equivalent permutation with U2 in the
first position by Lemma 2. (specifically U2, U1, U3). However, its existence is not necessary for flexibility
of U1, U2, U3 in this case.

3.3 Flexible structures versus flexible sequences

For a generating sequence and its independence equivalent permutation (corresponding structures are
independence equivalent), the pairwise consistency of considered distributions guarantees that both se-
quences are equivalent simultaneously (they both represents identical multidimensional distribution) [6].
Considering definition of a structure flexibility, flexible structures are closely connected with indepen-
dence equivalence and thus with IE operations [4] as well. The impact of IE operations on arbitrary
distribution represented by a compositional model was described in [6]. We will recall two needed asser-
tions:

Assertion 5 Let π1, π2, . . . , πn be a generating sequence with structure P. If σL is left cycle permutation
in P then

◃π1,π2,...,πn
= ◃(π1,π2,...,πn)σL

.

Assertion 6 Let π1, π2, . . . , πn be a generating sequence and σ = (1 2). If π1, π2 are consistent then

◃π1,π2,...,πn = ◃(π1,π2,...,πn)σ.

Considering the proof of Lemma 2, one can see that left cycle permutations and (1 2) transpositions
were used only. Then, in case of pairwise consistency, one can end up with the following deduction:

Lemma 3. If π1(U1), π2(U2), . . . , πn(Un) is a sequence of pairwise consistent probability distributions
with flexible structure U1, U2, . . . , Un, then this sequence is flexible.

Proof. This is a simple consequence of Corollary 2, Lemma 2, and iterative application of Assertions 5
and 6.

Remark 2. One may object, that the previous lemma - Lemma 3 - represents literally ”a reinvention of
a wheel”. Indeed, note that the condition F(P) = ∅ corresponds to the so called running intersection
property (RIP). Its definition is the following: Let U1, U2, . . . , Un is a sequence of sets. Then this sequence
meets RIP if

∀i = 2, . . . , n ∃j : (1 ≤ j < i)

(
Ui ∩ (

i−1∪
k=0

Uk) ⊆ Uj

)
.

This definition can be easily rewritten in case that the sequence of sets represents a structure P: Structure
P meets RIP if

∀i = 2, . . . , |P| ∃j : (1 ≤ j < i)
(
SP
i ⊆ KP

j

)
.

I.e. in case of RIP, there is a covering column for each column (including trivial ones). In case when
we do not consider trivial columns, then the condition of F(P) = ∅ coincides with RIP and one can find
the following lemma in [1]: If π1(U1), π2(U2), . . . , πn(Un) is a sequence of pairwise consistent probability
distributions such that U1, U2, . . . , Un meets RIP then this sequence is flexible.



Considering the proof of Lemma 2, Lemma 3 may be slightly modified using relations to generating
sequences given by Assertions 5 and 6. Recall, that while (1 2) transposition requires a consistency
of respective distributions to guarantee the equality of the permutated compositional model, left cycle
permutation has no additional claims on the corresponding distributions. Then, given the proof of Lemma
2, we do not need to require the pairwise consistency, we only need the consistency of those pairs of
distributions that corresponds to covering-covered pairs of columns in the respective structure:

Corollary 3. If π1(U1), π2(U2), . . . , πn(Un) is a sequence of probability distributions with flexible struc-
ture U1, U2, . . . , Un such that those pairs of distributions corresponding to covering-covered pairs of
columns from the structure are consistent, then this sequence is flexible.

Note that this become handy in case of automatical checking of flexibility. In case of a generating
sequence of length n, we restrict the number of consistencies to verify from

n(n− 1)

2

to
n− 1.

Note that consistency of ”covered × covering” distributions ensures, in the case of structure flexibility,
pairwise consistency. It is then (in the case of structure consistency) a sort of minimum spanning for
pairwise consistency.

In case of structure, flexibility guarantees that for every non-trivial column exists an independence
equivalent permutation with this column on the first position. Then, by generalization to generating
sequence (with structure without non-trivial columns) it holds that for distribution from the sequence
exists some equivalent permutation with the distribution at the beginning. This, although it has not been
mentioned (see [2] for example), guarantees that every such a low-dimensional distribution represents
marginal of the respective compositional model. Hence, those structures are perfect.

Conclusions

We give a brief introduction into the problem of flexible sequences in this short paper. In our approach
we employ the recent solution of equivalence problem in the area of compositional models structures.
The concept of flexible sequences is very strong and in case that we have a simple characterization of
flexible sequences, the problem of conditioning would be simple. Briefly, flexible sequences are those, that
may be reordered in many ways such that each variable appears among arguments of first distributions,
and all permutated generating sequences represent the same multidimensional probability distribution.
In this paper, we restrict ourselves to those flexible sequences whose structure induces the same system
of conditional independence assertions as structures of all respective permutations. I.e. structures of
all permutated sequences are independence equivalent. We have shown that in this case the necessary
condition of generating sequence flexibility is emptiness of induced F-conditions set and consistency of
several pairs of low-dimensional distributions from the sequence.
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